Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 2-Effective Octane Numbers

2012-04-16
2012-01-1284
Spark Ignited Direct Injection (SI DI) of fuel extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the large in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in direct injection (DI) is therefore especially advantageous due to the high heat of vaporization of ethanol. In addition to the thermal benefit due to charge cooling, ethanol blends also display superior chemical resistance to autoignition, therefore allowing the further extension of knock limits. Unlike the charge cooling benefit which is realized mostly in SI DI engines, the chemical benefit of ethanol blends exists in Port Fuel Injected (PFI) engines as well. The aim of this study is to separate and quantify the effect of fuel chemistry and charge cooling on knock. Using a turbocharged SI engine with both PFI and DI, knock limits were measured for both injection types and five gasoline-ethanol blends.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

1997-10-01
972887
A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
Technical Paper

Combustion Characterization in a Direct-Injection Stratified-Charge Engine and Implications on Hydrocarbon Emissions

1989-09-01
892058
An experimental study was conducted on a direct-injection stratified-charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System and operated with gasoline. Analysis of the injected fuel flow and the heat release showed that the combustion process was characterized by three distinct phases: fuel injection and distribution around the piston bowl, flame propagation through the stratified fuel-air mixture, and mixing-controlled burn-out with the heat-release rate proportional to the amount of unburned fuel in the combustion chamber. This characterization was consistent with previous visualization studies conducted on rapid-compression machines with similar configurations. Experiments with varied injection timing, spark plug location, and spark timing showed that the combustion timing relative to injection was critical to the hydrocarbon emissions from the engine.
Technical Paper

Combustion Optimization in a Hydrogen-Enhanced Lean-Burn SI Engine

2005-04-11
2005-01-0251
As part of ongoing research on hydrogen-enhanced lean burn SI engines, this paper details an experimental combustion system optimization program. Experiments focused on three key areas: the ignition system, in-cylinder charge motion produced by changes in the inlet ports, and uniformity of fuel-air mixture preparation. Hydrogen enhancement is obtained with a H2, CO, N2 mixture produced by a fuel reformer such as the plasmatron. The ignition system tests compared a standard inductive coil scheme against high-energy discharge systems. Charge motion experiments focused on the impact of different flow and turbulence patterns generated within the cylinder by restrictor plates at the intake port entrance, as well as novel inlet flow modification cones. The in-cylinder fluid motion generated by each configuration was characterized using swirl and tumble flow benches. Mixture preparation tests compared a standard single-hole pintle port fuel injector against a fine atomizing 12-hole injector.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Comparison of NOx Level and BSFC for HPL EGR and LPL EGR System of Heavy-Duty Diesel Engine

2007-08-05
2007-01-3451
Diesel engines are the most commonly used power plant of freight and public transportations in the world. Also, the newly developed injection system, Common Rail system, increases the demands for both light and heavy duty diesel vehicles. On the other hand, stringent emission regulations are being proposed with growing concern on NOx and PM emissions from diesel engines. Future emission regulations require advanced emission control technologies, such as EGR and SCR. Exhaust gas recirculation (EGR) is a commonly used technique to reduce NOx emission. In this paper, a model-based investigation was conducted to compare the effect of high pressure loop (HPL) EGR and low pressure loop (LPL) EGR system on NOx level and BSFC of a heavy-duty diesel engine. A WAVE model was created to simulate EURO 3 engine and each component of the engine was modeled using CATIA and WaveMesher.
Technical Paper

Computer Models For Evaluating Premixed and Disc Wankel Engine Performance

1986-03-01
860613
This paper describes two types of computer models which have been developed to analyze the performance of both premixed-charge and direct-injection stratified-charge Wankel engines. The models are based on a thermodynamic analysis of the contents of the engine's chambers. In the first type of model, the rate of combustion is predicted from measured chamber pressure by use of a heat release analysis. The analysis includes heat transfer to the chamber walls, work transfer to the rotor, enthalpy loss due to flows into crevices and due to leakage flows into adjacent chambers, and enthalpy gain due to fuel injection. The second type of computer model may be used to predict the chamber pressure during a complete engine cycle. From the predicted chamber pressure, the overall engine performance parameters are calculated. The rate of fuel burning as an algebraic function of crank angle is specified.
Technical Paper

Contribution of Liquid Fuel to Hydrocarbon Emissions in Spark Ignition Engines

2001-09-24
2001-01-3587
The purpose of this work was to develop an understanding of how liquid fuel transported into the cylinder of a port-fuel-injected gasoline-fueled SI engine contributes to hydrocarbon (HC) emissions. To simulate the liquid fuel flow from the valve seat region into the cylinder, a specially designed fuel probe was developed and used to inject controlled amounts of liquid fuel onto the port wall close to the valve seat. By operating the engine on pre-vaporized Indolene, and injecting a small amount of liquid fuel close to the valve seat while the intake valve was open, we examined the effects of liquid fuel entering the cylinder at different circumferential locations around the valve seat. Similar experiments were also carried out with closed valve injection of liquid fuel at the valve seat to assess the effects of residual blowback, and of evaporation from the intake valve and port surfaces.
Journal Article

Coordinated Strategies for Ethanol and Flex Fuel Vehicle Deployment: A Quantitative Assessment of the Feasibility of Biofuel Targets

2010-04-12
2010-01-0735
The goal of this paper is to quantitatively assess the implications of congressionally mandated biofuel targets on requirements for ethanol blending, distribution, and usage in spark ignition engines in the U.S. light-duty vehicle fleet. The “blend wall” is a term that refers to the maximum amount of ethanol that can be blended into the gasoline pool without exceeding the legal volumetric blend limit of 10%. Beyond the blend wall, the additional ethanol fuel must be used in higher blends of ethanol like E85. Once the blend wall is reached, the existing fleet of flex fuel vehicles (FFVs) will be required to use E85 for some percentage of vehicle miles traveled (VMT) in order to achieve the Renewable Fuel Standard (RFS) targets.
Technical Paper

Current Developments in Spark-Ignition Engines

1976-02-01
760606
This paper reviews the major changes that have occurred in spark-ignition engine design and operation over the last two decades. The automobile air pollution problem, automobile emission standards, and automobile fuel economy standards -- the factors which have and are producing these changes -- are briefly described. The major components in spark-ignition engine emission control systems are outlined, and advances in carburetion, fuel injection, ignition systems, spark retard and exhaust gas recycle strategies, and catalytic converters, are reviewed. The impact of these emission controls on vehicle fuel economy is assessed. The potential for fuel economy improvements in conventional spark-ignition engines is examined, and promising developments in improved engine and vehicle matching are outlined.
Technical Paper

Development and Evaluation of a Friction Model for Spark-Ignition Engines

1989-02-01
890836
The details of a model which predicts friction mean effective pressure (fmep) for spark-ignition engines are described. The model, which was based on a combination of fundamental scaling laws and empirical results, includes predictions of rubbing losses from the crankshaft, reciprocating, and valvetrain components, auxiliary losses from engine accessories, and pumping losses from the intake and exhaust systems. For some predictions, it was possible to derive terms which were proportional to fmep based on lubrication theory. For other predictions, phenomenological terms which described the results of the processes rather than the processes themselves were used. Each of the predictions was “calibrated” using fmep data from published sources. The sum of these predictions gave reliable estimates of spark-ignition engine fmep and serves as a useful tool for understanding how the major engine design and operating variables affect individual component friction.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions

1979-02-01
790291
A computer simulation of the four-stroke spark-ignition engine cycle has been developed for studies of the effects of variations in engine design and operating parameters on engine performance, efficiency and NO emissions. The simulation computes the flows into and out of the engine, calculates the changes in thermodynamic properties and composition of the unburned and burned gas mixtures within the cylinder through the engine cycle due to work, heat and mass transfers, and follows the kinetics of NO formation and decomposition in the burned gas. The combustion process is specified as an input to the program through use of a normalized rate of mass burning profile. From this information, the simulation computes engine power, fuel consumption and NO emissions. Predictions made with the simulation have been compared with data from a single-cylinder CFR engine over a range of equivalence ratios, spark-timings and compression ratios.
Technical Paper

Divided-Chamber Diesel Engine, Part I: A Cycle-Simulation Which Predicts Performance and Emissions

1982-02-01
820273
A model has been developed for a divided-chamber automotive diesel engine which describes the intake, compression, combustion and expansion, and exhaust processes in sufficient detail to permit calculations of pressure, fuel-air ratio distribution, heat release distribution, NO formation, soot mass loading, and soot oxidation processes. The novel feature of this model is the use of a stochastic mixing approach during the combustion and expansion processes to describe the nonuniform fuel-air ratio distribution within the engine. In this approach, the fuel-air ratio distribution during the combustion and emissions formation processes can be followed as it evolves with time. Experimental data generated on a single-cylinder divided-chamber diesel engine were used to verify the accuracy of the model predictions. Agreement between experimental data and predicted values of engine performance and NOx emissions levels was good.
Technical Paper

Divided-Chamber Diesel Engine, Part II: Experimental Validation of a Predictive Cycle-Simulation and Heat Release Analysis

1982-02-01
820274
In this study, a set of performance and emissions data, obtained from a single-cylinder divided-chamber automotive diesel engine over the normal engine operating range, is described and analyzed. The data are used to evaluate a computer simulation of the engine's operating cycle, described in a companion paper, which predicts the properties of gases inside the engine cylinder throughout the cycle, and engine efficiency, power and NOx emissions. Satisfactory agreement between predictions and measurements is obtained over most of the engine's operating range. The characteristics of the experimental pre- and main-chamber pressure versus crank angle data are then examined in detail. A heat release analysis appropriate for divided-chamber diesel engines is developed and used to obtain heat release rate profiles through the combustion process.
Technical Paper

Early Flame Development and Burning Rates in Spark Ignition Engines and Their Cyclic Variability

1987-02-01
870164
Experiments by Gatowski and Heywood have been analyzed to obtain both qualitative and quantitative information on early flame development and burning rates in a square piston premixed spark-ignition engine. Flame growth was observed using high speed Schlieren photography and simultaneous pressure records were obtained using piezo-electric transducers. To study the effects of in-cylinder gas motion several combinations of shrouded and unshrouded inlet valves, and flat and stepped pistons were used. Spark position was also varied. The analysis supports the wrinkled laminar flame model of turbulent flame structure in spark-ignition engines. It also suggests that cycle-by-cycle variations in the growth rate and location of the flame kernel at very early times are the major cause of cycle-by-cycle pressure variations in spark-ignition engines.
Technical Paper

Effect of Engine and Fuel Variables on Liquid Fuel Transport into the Cylinder in Port-Injected SI Engines

1999-03-01
1999-01-0563
Liquid fuel inflow into the cylinder is considered to be an important source of exhaust hydrocarbon (HC) emissions from automotive spark ignition engines. These liquid-fuel-caused emissions are increased significantly during the start up and subsequent warm-up period. This study analyzes the influence of several engine and injector design variables, and fuel parameters, on the in-cylinder liquid fuel behavior. The effect of the following parameters on the characteristics of the fuel droplets entering the cylinder was studied: Fuel volatility, injection timing, intake valve timing, injector type, spray geometry, and spray targeting in the intake port. A Phase Doppler Particle Analyzer (PDPA) was used in a single-cylinder flow visualization combustion engine to assess this in-cylinder liquid fuel behavior. Measurements of fuel droplet characteristics (size and velocity) were taken in selected locations in the vicinity of the intake valve during starting and warm up.
Technical Paper

Effect of Fuel Properties on Diesel PM Components

2007-07-23
2007-01-1941
In this study, compositions, size distributions and activation energy in oxidation of diesel PM were investigated. Benzene (C6H6) was mixed to diesel fuel as a promoter of PM formation, and further, ferrocene (Fe(C5H5)2) was added as a promoter for oxidation processes during in-cylinder combustion and after-treatment. The effect of those additions on the PM characteristics was discussed on the basis of measured results such as SOF and dry-soot ratio in PM, primary and aggregate particle size distributions of PM, activation energy of PM oxidation, and PM components with elemental analysis. As a result, it was shown that ferrocene had special effect on the PM size distribution and the activation energy.
Technical Paper

Effect of Hydrogen as an Additive on Lean Limit and Emissions of a Turbo Gasoline Direct Injection Engine

2015-09-01
2015-01-1886
For gasoline engine, thermal efficiency can be improved by using lean burn. However, combustion instability occurs when gasoline engine is operated on lean condition. Hydrogen has features that can be used for improving combustion stability of gasoline engine. In this paper, an experimental study of hydrogen effect on lean limit was carried out using a four-cylinder 2.0L turbo gasoline direct injection engine. The engine torque was fixed at 110Nm on 1600RPM, 2000RPM and 2400RPM. The results showed that lean limit was extended and brake thermal efficiency was improved by hydrogen addition. Especially, at lower engine speed, the large improvement of lean limit was achieved. However, improvement of brake thermal efficiency was achieved at high speed. HC and CO2 emissions were decreased and NO emissions increased with hydrogen addition. CO emissions were slightly reduced with hydrogen addition.
Technical Paper

Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine

2012-09-10
2012-01-1712
An experimental study was performed in a firing SI engine at conditions representative of the warmup phase of operation in which liquid gasoline films were established at various locations in the combustion chamber and the resulting impact on hydrocarbon emissions was assessed. Unique about this study was that it combined, in a firing engine environment, direct visual observation of the liquid fuel films, measurements of the temperatures these films were subjected to, and the determination from gas analyzers of burned and unburned fuel quantities exiting the combustion chamber - all with cycle-level resolution or better. A means of deducing the exhaust hydrocarbon emissions that were due to the liquid fuel films in the combustion chamber was developed. An increase in exhaust hydrocarbon emissions was always observed with liquid fuel films present in the combustion chamber.
X